PULMONARY HYPERTENSION

MARTIN T. MPE
CARDIOLOGIST
MEDICLINIC HEART HOSPITAL
CASE REPORT

A 35 year old female, general worker. Married with 2 children with the youngest aged 12 years.

Presenting complaints :
- Progressive dyspnea for 5 months,
- Leg swelling for 2 months,
- Abdominal distension for 1 month
- Reduced urine output
Past medical history

- No similar illness in the past.
- No history of Hypertension, DM

Lifestyle and habits:
- She is a non-smoker and a teetotaler.
- No h/o substance abuse.
Clinical examination

The patient was fully conscious and well orientated.

Afebrile, well hydrated

Muddy conjunctiva +

No pallor/cyanosis/lymphadenopathy
JVP elevated – CV waves prominent
Bilateral pitting pedal edema

Pulse rate - 80/min regular
BP- 110/70 mm hg
CVS - Apical impulse left 5th ICS 2.5cm lateral to MCL, normal character
Prominent parasternal heave
Palpable P2
Loud P2 with an ESM graded 2/6
PSM graded 3/6 in the tricuspid area

Respiratory system – Normal findings

Abdomen – Non-tender, pulsatile hepatomegaly and ascites

CNS – Grossly intact.
PULMONARY HYPERTENSION

? CAUSE

RV FAILURE

Pulmonary hypertension (PH) is an abnormal elevation in pulmonary artery pressure, as a result of left heart failure, pulmonary parenchymal or vascular disease, thromboembolism, or a combination of these factors.
Definition of PAH by WHO

Increase in blood pressure in pulmonary circulation (either in the arteries, or both in arteries and veins)
Normal pressure is 14-18mmHg at rest.
20-25mmHg on exercise.
Hemodynamically it is defined as an increase in mean pulmonary arterial pressure to >-25mmHg at rest.
Can be measured by right heart catheterization.
WHO Classifications of Pulmonary Hypertension

1. Pulmonary Arterial Hypertension
2. Pulmonary Hypertension owing to left heart disease
3. PH Secondary to Chronic Hypoxemia
4. Chronic Thrombo-Embolic Pulmonary Hypertension (CTEPH)
5. Miscellaneous (usually extrinsic compression of pulmonary arteries)

WHO Venice 2003 – Later updated in 2008 (Dana point)
Group 1 - PAH

IPAH

Familial – BMPR2, ALK 1, Unknown

Associated with PAH
- Connective Tissue Disease (Scleroderma, SLE, MCTD, RA)
- Congenital Heart Disease
- Portal hypertension (5-7% of patients)
- HIV (0.5% of patients)
- Drugs/toxins (aminorex-, dexfenfluramine-, or fenfluramine-containing products, cocaine, methamphetamine)
- Other:

Associated with venous/capillary involvement
- Pulmonary veno-occlusive disease (evidence of pulmonary vascular congestion)
- Pulmonary capillary hemangiomatosis

Persistent PH of newborn.
Group 2: Pulmonary hypertension due to left heart disease
 ◦ Systolic dysfunction
 ◦ Diastolic dysfunction
 ◦ Valvular disease

Group 3: Pulmonary hypertension associated with lung disease and/or hypoxemia
 ◦ Chronic obstructive lung disease
 ◦ Interstitial lung disease
 ◦ Sleep-disordered breathing
 ◦ Alveolar hypoventilation disorders
 ◦ Chronic exposure to high altitude
 ◦ Developmental abnormalities
Group 4: Pulmonary hypertension due to chronic thrombotic and/or embolic disease

- Thromboembolic obstruction of proximal pulmonary arteries
- Thromboembolic obstruction of distal pulmonary arteries

Group 5: Miscellaneous

- Sarcoidosis, histiocytosis X, lymphangioniomyomatosis, compression of pulmonary vessels (adenopathy, tumor, fibrosing mediastinitis, thyroid disorders, glycogen storage disease, Gaucher’s disease,
Defined treatments

1. Pulmonary arterial hypertension
 - Idiopathic
 - Heritable
 - Drugs
 - Connective tissue disease
 - HIV
 - Portal hypertension
 - Congenital heart disease
 - Schistosomiasis

1'. Pulmonary veno-occlusive disease
 - Pulmonary capillary haemagglomatisis

2. Pulmonary hypertension owing to left heart disease
 - Systolic dysfunction
 - Diastolic dysfunction
 - Valvular disease

3. Pulmonary hypertension owing to lung disease/hypoxia
 - Chronic obstructive pulmonary disease
 - Interstitial lung disease
 - Sleep disorder
 - Alveolar hypoventilation

4. Chronic thromboembolic pulmonary hypertension
 - Operable
 - Inoperable

5. Multifactorial/unclear mechanisms
 - Haematological
 - Chronic haematolytic anaemia
 - Myeloproliferative disease
 - Splenectomy
 - Systemic disorders
 - Sarcoidosis
 - Langerhans cell histiocyosis
 - Lymphangioleiomyomatosis
 - Neurofibromatosis
 - Vasculitis
 - Metabolic disorders
 - Glycogen storage disease
 - Gaucher’s disease
 - Thyroid disorder
 - Others
 - Tumour obstruction
 - Fibrosing mediastinitis
 - Chronic renal failure

Optimal treatment not clear
Pathogenesis of Pulmonary Arterial Hypertension

1. Risk Factors and Associated Conditions
 - Collagen Vascular Disease
 - Congenital Heart Disease
 - Portal Hypertension
 - HIV infection
 - Drugs and Toxins
 - Pregnancy

2. Vascular Injury
 - Endothelial Dysfunction
 - ↓ Nitric Oxide Synthase
 - ↓ Prostacyclin Production
 - ↑ Thromboxane Production
 - ↑ Endothelin 1 Production
 - Vascular Smooth Muscle Dysfunction
 - Impaired Voltage-Gated Potassium Channel (K$_{v1.5}$)

3. Disease Progression
 - Loss of Response to Short-Acting Vasodilator Trial
 - Adventitial and Intimal Proliferation
 - In situ Thrombosis
 - Plexiform Lesion
 - Advanced Vascular Lesion

Susceptibility
- Abnormal BMPR2 Gene
- Other Genetic Factors

FLOW

Adventitia
Media
Intima

Early Intimal Proliferation
Smooth Muscle Hypertrophy
Arterial Proliferation
Vasoconstriction
Pathophysiology & Pathology – Group 1

Exact mechanism – unknown.

Multifactorial.

1) Excessive vasoconstriction - abnormal function or expression of potassium channels in the smooth muscle cells.

2) Endothelial dysfunction leads to chronically impaired production of vasodilator and Vasoconstrictors (NO, prostacyclin, thromboxane A2 and endothelin-1)
3) Reduced plasma levels of other vasodilator and antiproliferative substances such as vasoactive intestinal peptide

4) In the adventitia there is increased production of extracellular matrix including collagen, elastin, fibronectin. Inflammatory cells and platelets (through the serotonin pathway)

5) Prothrombotic abnormalities have been demonstrated in PAH patients, and thrombi are present in both the small distal pulmonary arteries and the proximal elastic pulmonary arteries
1. Tunica media hypertrophy

2. Tunica intima proliferation

3. Fibrotic changes of tunica intima
 - concentric
 - eccentric

4. Tunica adventitial thickening with moderate perivascular infiltrates

5. Complex lesions
 - Plexiform
 - Dilated

6. Thrombotic lesions.
Due to left heart diseases:

Pulmonary venous hypertension-most common cause

Usually due to left-sided heart disease (valvular, coronary or myocardial), → obstruction to blood flow downstream from the pulmonary veins.

Reversibility is variable, dependent on lesion.
Pathophysiology & Pathology – Group 3
due to lung diseases and/or hypoxia:

Multiple
1) hypoxic vasoconstriction,
2) mechanical stress of hyperinflated lungs,
3) loss of capillaries – emphysema, fibrosis
4) inflammation, and toxic effects of cigarette smoke.
5) endothelium-derived vasoconstrictor–vasodilator imbalance.

Hypoxia induced pulmonary vasoconstriction and anatomical destruction of the vascular bed due to high pulmonary resistance and ultimately RV failure.
CTEPH: non-resolution of acute embolic masses which later undergo fibrosis leading to mechanical obstruction of pulmonary arteries is the most important process.

PH with unclear and/or multifactorial mechanisms.
Drugs and toxins known to induce PAH

<table>
<thead>
<tr>
<th>Definite</th>
<th>Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aminorex</td>
<td>• Cocaine</td>
</tr>
<tr>
<td>• Fenfluramine</td>
<td>• Phenylpropanolamine</td>
</tr>
<tr>
<td>• Dexfenfluramine</td>
<td>• St John’s Wort</td>
</tr>
<tr>
<td>• Toxic rapeseed oil</td>
<td>• Chemotherapeutic agents</td>
</tr>
<tr>
<td>• Benfluorex</td>
<td>• Selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td></td>
<td>• Pergolide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likely</th>
<th>Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Amphetamines</td>
<td>• Oral contraceptives</td>
</tr>
<tr>
<td>• L-tryptophan</td>
<td>• Oestrogen</td>
</tr>
<tr>
<td>• Methamphetamines</td>
<td>• Cigarette smoking</td>
</tr>
</tbody>
</table>
Symptoms of PAH

- Dyspnea 60%
- Fatigue 19%
- Near syncope/syncope 13%
- Chest pain 7%
- Palpitations 5%
- LE edema 3%
- Hoarseness of voice 2%

(Ortner’s syndrome)
Physical Exam Findings in PH

- ↑ Jugular venous pulse
- Prominent V wave if tricuspid regurgitation present
- Clear lungs
- Fixed splitting of S_2
- Left parasternal lift
- Loud P_2
- Large pulsatile liver
- Cold extremities
- Clubbing rare
- Peripheral edema
BLOOD TESTS AND IMMUNOLOGY.

- Routine biochemistry, hematology and thyroid function tests

- CTD are diagnosed primarily on clinical and laboratory criteria and an autoimmune screen consists of antinuclear antibodies, including anti-centromere antibody, anti-SCL70 and RNP.

- About one third of patients with idiopathic PAH have positive but low antinuclear antibody titers (≥ 1:80 dilutions).

HIV Testing

- HIV-positive patients have a higher rate of IPAH than the general population
Antinuclear Antibody

- Excluding autoimmune disorders is an important part of the workup in a patient with suspected pulmonary hypertension. Reportedly, up to 40% of patients with IPAH have a positive finding on an antinuclear antibody (ANA) assay but no other clinical manifestations of autoimmune disease.

Thyrotropin

- Screen for thyroid abnormalities during the initial workup for IPAH because these abnormalities are common in patients with IPAH. Thyroid abnormalities may be the cause of or contribute to symptoms similar to IPAH. In addition, hyperthyroidism itself may lead to an elevation in pulmonary artery pressure.
TYPE NATRIURETIC PEPTIDE

Levels of B-type natriuretic peptide (BNP) and N-terminal BNP have been shown to be elevated in patients with IPAH, and levels appear to be prognostic.
Specialized Investigations

- Chest Radiography
- Electrocardiogram
- Echocardiography
- Lung function testing
- Ventilation-perfusion scanning
- HRCT scanning
- Pulmonary angiography
- Cardiac catheterization
- Exercise testing
CXR in PH

- Large central Pulmonary arteries
- Right Ventricular Hypertrophy
- Rapid attenuation of pulmonary vessels
- Clear Lung Fields
Chest Radiograph

- Enlargement of pulmonary trunk
- Pruning of peripheral pulmonary arterial tree
- Right ventricular enlargement
- Findings corresponding to condition leading to PH
ECG in PH

Right axis deviation

An R wave/S wave ratio greater than one in lead V1

Incomplete or complete right bundle branch block

Increased P wave amplitude in lead II (P pulmonale) due to right atrial enlargement
Echocardiogram Findings

TR
Right atrial and ventricular hypertrophy
Flattening of interventricular septum
Small LV dimension
Dilated PA
Pericardial effusion
 • Poor prognostic sign
 • RA pressure so high it impedes normal drainage from pericardium
 • Do not drain, usually does not induce tamponade since RV under high-pressure and non-collapsible
Cardiac catheterization
Cardiac catheterization

Determination of:-

- Right atrial pressure
- Right ventricular pressure
- PAP
- PCWP
- Pulmonary blood flow (cardiac output)
- Vasoreactivity
<table>
<thead>
<tr>
<th>Grade</th>
<th>Systolic</th>
<th>Diastolic</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>30-50</td>
<td>20-25</td>
<td>>20</td>
</tr>
<tr>
<td>(Mild)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>50-70</td>
<td>26-35</td>
<td>>40</td>
</tr>
<tr>
<td>(Moderate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>70-110</td>
<td>36-45</td>
<td>>50</td>
</tr>
<tr>
<td>(Severe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>>110</td>
<td>46-55</td>
<td>>60</td>
</tr>
<tr>
<td>(Systemic or supra systemic)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data from 100 patients of PAH and rheumatic heart disease. Quintile 1 & 2 (Grade 1) quintile 3 & 4 (Grade 2) quintile 5 (Grade 3) top 3% (Grade 4)
<table>
<thead>
<tr>
<th>Definition</th>
<th>Characteristics</th>
<th>Clinical group(s)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary hypertension</td>
<td>Mean PAP 25 mmHg</td>
<td>All</td>
</tr>
<tr>
<td>Pre-capillary PH</td>
<td>Mean PAP 25 mmHg, PWP 15 mmHg, CO normal or reduced</td>
<td>1. Pulmonary arterial Hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. PH due to lung diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Chronic Thromboembolic PH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. PH with unclear and/or Multifactorial mechanisms</td>
</tr>
<tr>
<td>Post-capillary PH</td>
<td>Mean PAP 25 mmHg, PWP .15 mmHg, CO normal or reduced</td>
<td></td>
</tr>
<tr>
<td>Passive TPG 12 mmHg</td>
<td></td>
<td>2. PH due to left heart disease</td>
</tr>
<tr>
<td>Reactive (out of proportion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPG .12 mmHg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other Investigations

- Lung function testing
- Sleep studies
- Ventilation-perfusion scanning
- HRCT scanning
- Lung biopsy
- Pulmonary angiography
- Exercise testing
Diagnostic Work-up of PAH

Suspected pulmonary hypertension

Echocardiogram suggestive of pulmonary hypertension

No

Low clinical suspicion for pulmonary hypertension?

Yes

Seek alternative causes of symptoms

No

Consider:
Exercise echocardiogram
OR
Right heart catheterization

Yes

Significant left heart disease, adequate to explain pulmonary hypertension

No

Group 2 PH

Consider:
Pulmonary function tests
Overnight oximetry
Polysomnography
Ventilation-perfusion scan
ANA, RF, ANCA
HIV serology
Liver function tests

Underlying cause of pulmonary hypertension identified?

No

Idiopathic pulmonary arterial hypertension

Yes

Group 1 PAH, Group 3 PH, Group 4 PH, or Group 5 PH

Confirm with right heart catheterization
FINAL DIAGNOSIS

Idiopathic Pulmonary Hypertension
Why Treat PAH?

Survival & Prognosis of PAH

- Prognosis of the disease is very poor.
- The median survival of patients with IPAH is 2.8 yrs.
- Estimated survival rates are:
 - 68% at 1 year
 - 48% at 3 years
 - 34% at 5 years
- The estimated incidence of PAH among HIV-infected patients is 0.5% (1/200).
- PAH is found in 7-29% of patients with systemic sclerosis.
- Median survival of patients who have scleroderma & PAH is approx 1 year.

Poor prognostic factors

- Age >45 years
- (WHO) functional class III or IV
- Failure to improve to a lower WHO functional class during treatment
- Echocardiographic findings of a pericardial effusion, large right atrial size, elevated right atrial pressure, or septal shift during diastole
- Decreased pulmonary arterial capacitance (ie, the stroke volume divided by the pulmonary arterial pulse pressure)
- Increased N-terminal pro-brain natriuretic peptide level (NT-pro-BNP)
- Prolonged QRS duration
- Hypocapnia
- Comorbid conditions (eg, COPD, diabetes)
How do we Treat Them?

General measures:
- Avoid pregnancy
- Contraception imperative
- Maternal mortality 30%
- Immunizations for respiratory illnesses
 - Influenza & pneumonia vaccinations
- Minimize valsalva maneuvers—increase risk of syncope
- Cough, constipation, heavy lifting, etc
McLaughlin, V. V. et al. J Am Coll Cardiol 2009;53:1573-1619
Classes of therapy

MEDICAL
- Diuretics
- Anti coagulants (IPAH)
- Digoxin
- Oxygen
- PAH specific therapy

SURGICAL THERAPY
- Atrial septostomy
- Lung transplantation
Anticoagulants

Studies only show benefit in IPAH patients, based on improved survival.

Other PAH groups not as clear, use in them considered expert opinion.

Generally, keep INR 2.0-2.5.

Thought to lessen in-situ thrombosis
Oxygen

Formal assessment of nocturnal and exertional oxygenation needs.

Minimize added insult of hypoxic vasoconstriction

Keep oxygen saturation $\geq 90%$
 • May be impossible with large right to left shunt

Exclude nocturnal desaturation
 • Overnight oximetry

Rule out concomitant obstructive sleep apnea and hypoventilation syndromes
PAH-Specific Therapies

1) Calcium channel blockers
2) Endothelin receptor antagonists (ERAs)—Bosentan, Sitaxsentan, Ambrisentan
3) Phosphodiesterase (type 5) inhibitors (PDE 5-I)—Sildenafil, Tadalafil, Vardenafil.
4) Prostanoids—Epoprostenol, Treprostinil, Iloprost
5) Guanylate cyclase stimulant- Riociguat
Targeted Therapies for PAH

PAH Treatment

- Endothelin Pathway
 - Endothelin Receptor Antagonists
 - Bosentan, Sitaxsentan, Ambrisentan

- Nitric Oxide Pathway
 - Phosphodiesterase 5 Inhibitors
 - Sildenafil, Tadalafil

- Prostacyclin Pathway
 - Prostacyclin Derivatives
 - Epoprostenol, Treprostinil, Beraprost, Inhaled iloprost, Intravenous iloprost
Calcium Channel Blockers

only when demonstrated vasoreactivity in RHC (about 10% or less of patients)
Diltiazem or nifedipine preferred.
Titrate up to maximum tolerated dose.
Systemic hypotension may prohibit use
Only 50% of patients maintain response to CCB.
Not in FC IV patients or severe right heart failure
Failure of medical therapy:

Surgical Care

- A single- or double-lung transplant is indicated for patients who do not respond to medical therapy.

- Atrial septostomy is a palliative procedure allowing interatrial right-to-left shunting to occur, thus delivering more overall oxygen content to the respiring tissues, albeit with a lower overall saturation.
Future Therapies

TYROSINE KINASE INHIBITORS

CINACIGUAT, RIOCIGUAT - ACTIVATORS OF GUANYLYL CYCLASE
Therapy for PAH
Functional class II, III, IV

General Care
Oral anticoagulants + diuretics + oxygen + digoxin

Acute Vasoreactivity Testing [A for IPAH, E/C for other PAH]

Positive
Oral CCB
Sustained Response
Yes
Continue CCB
No

Functional Class III
Endothelin Receptor Antagonists (Bosentan)
or PDE-5 Inhibitors (Sildenafil)
or Chronic IV Epoprostenol
or Prostanoid Analogues
Sq Treprostinil, Inh Iloprost, Berprost

No improvement or deterioration
Atrioseptostomy ± Lung Transplantation

Functional Class IV
Chronic IV Epoprostenol
Bosentan
Treprostinil
Chronic IV Iloprost
Assessing disease severity, stability and prognosis

<table>
<thead>
<tr>
<th>Better prognosis</th>
<th>Determinants of prognosis</th>
<th>Worse prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Clinical evidence of RV failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Slow</td>
<td>Rate of progression of symptoms</td>
<td>Rapid</td>
</tr>
<tr>
<td>No</td>
<td>Syncope</td>
<td>Yes</td>
</tr>
<tr>
<td>I, II</td>
<td>WHO-FC</td>
<td>IV</td>
</tr>
<tr>
<td>Longer (>500 m)</td>
<td>6MWT</td>
<td>Shorter (<300 m)</td>
</tr>
<tr>
<td>Peak O₂ consumption >15 mL/min/kg</td>
<td>Cardio-pulmonary exercise testing</td>
<td>Peak O₂ consumption <12 mL/min/kg</td>
</tr>
<tr>
<td>Normal or near-normal</td>
<td>BNP/NT-proBNP plasma levels</td>
<td>Very elevated and rising</td>
</tr>
<tr>
<td>No pericardial effusion</td>
<td>Echocardiographic findings</td>
<td>Pericardial effusion</td>
</tr>
<tr>
<td>TAPSE<sup>b</sup> >2.0 cm</td>
<td>Haemodynamics</td>
<td>TAPSE<sup>b</sup> <1.5 cm</td>
</tr>
<tr>
<td>RAP <8 mmHg and CI ≥2.5 L/min/m²</td>
<td></td>
<td>RAP >15 mmHg or CI ≤2.0 L/min/m²</td>
</tr>
</tbody>
</table>
KNOWLEDGE PUT TO WORK IS WISDOM IN ACTION