Case Study 2
Mrs PM

- Initially seen as 52 year old woman in 1998 with a diagnosis of "burnt out" sarcoid heart disease

- HF-REF with an EF of 12%, NYHA FC IIb

- Had presented with AV Block and had a dual chamber pacemaker previously implanted

- Intermittent ventricular arrhythmias

- Medications included Furosemide 240 mg in divided doses, Carvedilol 25 mg BD, Accupril 10 mg BD, Isosorbide Mononitrate 20 mg BD, Plenish K 2 TDS, Metolazone 2,5 mg twice a week
Sensed atrium, paced ventricle
Sarcoid Heart Disease

- Cardiac sarcoidosis can be a benign, incidentally discovered condition or a life-threatening disorder causing sudden death.

- Predominately affects lungs

- Cardiac involvement rare - 1 in 50 clinical cases

- More cardiac involvement on autopsy - 20-25%

- Less common in Caucasians

Granulomatous Disease
Sarcoid Heart Disease

- All chambers can be involved, ventricles predominately
- Can present as a dilated cardiomyopathy
- Mitral regurgitation can be present related to papillary muscle involvement
- Ventricular and atrial arrhythmias relatively common
- Definitive diagnosis - tissue biopsy
- Role of serum ACE, Calcium levels
DHF: Deteriorating Heart Failure

• After a period of prior stability, she presents to casualty on a Sunday night with worsening effort tolerance (NYHA FC III), palpitations, cough and body swelling

• She is found to have significant pedal oedema, cool peripheries, a sinus tachycardia of 104 beats per minute and a left sided third heart sound but relatively comfortable at rest, BP 100/85, SCr 140 umol/l
Acute Heart Failure Syndrome

PUFFERS/SSOBAR
- Admission usually short and necessary
- Predominantly
 - LV & Mitral Valve Dysfunction
 - Fluid mal-distribution
 - Pulmonary oedema
- Orthopnoea
- Hypertensive
- Paroxysmal nocturnal dyspnoea
- Reduced exercise tolerance

BLOATERS/CARBOSE
- Admission often prolonged but really necessary
- Predominantly
 - Right or BiV Dysfunction
 - Leading to fluid retention
 - Peripheral congestion
- Ankle swelling
- Hypotension
- Ascites
- Hepatomegaly

Aetiology
- ACS
- BP/Vascular
- Arrhythmia
- Valves
- Renal
Categories of AHF

End result of a relatively slow (days to weeks) deterioration of severe chronic HF

Rapidly progressive disorder of high blood pressure (BP) accompanied by severe acute dyspnea

Am Heart J
2008;155:9-18
Suspected heart failure

Acute onset

ECG
Chest x-ray

Echocardiography
ECG normal and NT-proBNP <300 pg/mL or BNP <100 pg/mL
Heart failure unlikely

BNP/NT-pro BNP
ECG abnormal or NT-proBNP ≥300 pg/mL or BNP ≥100 pg/mL

Non-acute onset

ECG
Possibly chest x-ray

BNP/NT-pro BNP
ECG abnormal or NT-proBNP ≥125 pg/mL or BNP ≥35 pg/mL
Heart failure unlikely

Echocardiography
ECG normal and NT-proBNP <125 pg/mL or BNP <35 pg/mL
Ischemia as a Precipitant

The exact incidence of frank myocardial ischemia in AHF remains unknown.

The EuroHeartFailure survey programme: 32% of patients admitted with AHF had chest pain at admission, and acute myocardial infarction was diagnosed in only 12%.

ECG changes and troponin release may occur in patients with HF without CAD.

PRESERVED-HF study detectable troponin T was present in 43.5%, and troponin I was present in 73.9% of patients at baseline.

Troponin spillage can occur even when ischemic heart disease is not present or ischemia may occur without significant troponin leakage.

In ACS, AHF a very strong negative prognostic indicator.
Our patient is cold and wet

<table>
<thead>
<tr>
<th>Subset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Warm and dry (normal)</td>
<td>PCWP 15–18 mmHg and CI >2.2 L/min/m²</td>
</tr>
<tr>
<td>II: Warm and wet (congestion)</td>
<td>PCWP >18 mmHg and CI >2.2 L/min/m²</td>
</tr>
<tr>
<td>III: Cold and dry (hypoperfusion)</td>
<td>PCWP 15–18 mmHg and CI <2.2 L/min/m²</td>
</tr>
<tr>
<td>IV: Cold and wet (congestion and hypoperfusion)</td>
<td>PCWP >18 mmHg and CI <2.2 L/min/m²</td>
</tr>
</tbody>
</table>

CI: cardiac index; PCWP: pulmonary capillary wedge pressure. Source: Reference 11.
<table>
<thead>
<tr>
<th>Perfusion</th>
<th>Warm</th>
<th>Cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume status</td>
<td>Warm/Wet</td>
<td>Cold/Wet</td>
</tr>
<tr>
<td>Wet</td>
<td>Warm/Wet</td>
<td>Cold/Wet</td>
</tr>
<tr>
<td>Dry</td>
<td>Warm/Dry</td>
<td>Cold/Dry</td>
</tr>
</tbody>
</table>
Algorithm for normotensive AHF

- SBP 100–140 mmHg
 - Start iv. loop diuretics
 - Consider vasodilators if SBP >120 mmHg (SL, topical, iv.)
 - REASSESS!
 - Is patient improving?
 - Improved vital signs?
 - Good urine output?

- Consider NIV if dyspneic, tachypneic, increased work of breathing

- Were adequate doses of iv. diuretics given? Alternative diagnosis? Untreated precipitant?

No
Non-Invasive positive pressure ventilation (NPPV) is a way of assuring positive pressure in the airways throughout the entire respiratory cycle without intubation.
Various targets for therapies used in the management of acute heart failure.
In patients with HFrEF experiencing a symptomatic exacerbation of HF requiring hospitalization during chronic maintenance treatment with GDMT, it is recommended that GDMT be continued in the absence of hemodynamic instability or contraindications.
Therapies in the Hospitalized HF Patient

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF patients hospitalized with fluid overload should be treated with intravenous diuretics</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>HF patients receiving loop diuretic therapy, should receive an initial parenteral dose greater than or equal to their chronic oral daily dose, then should be serially adjusted</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>HFrEF patients requiring HF hospitalization on GDMT should continue GDMT unless hemodynamic instability or contraindications</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Initiation of beta-blocker therapy at a low dose is recommended after optimization of volume status and discontinuation of intravenous agents</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Thrombosis/thromboembolism prophylaxis is recommended for patients hospitalized with HF</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Serum electrolytes, urea nitrogen, and creatinine should be measured during the titration of HF medications, including diuretics</td>
<td>I</td>
<td>C</td>
</tr>
</tbody>
</table>
In-Hospital Mortality by SCr and SBP From OPTIMIZE HF Registry

1 mg/dL 88.4 µmol/L
2 mg/dL 176.8 µmol/L

"Retained Cardiac Memory of Hospitalisation"

Recurring hospitalisations...

- Cardiac Function & CHF severity
- Hospitalisation

Half patients were dead by 1 year after 3 hospitalisations

Median Survival (years):

1st hospitalization (n=14,374) 2nd hospitalization (n=3,358) 3rd hospitalization (n=1,123) 4th hospitalization (n=417)

What next after stabilisation in hospital?

- Upgrade the pacemaker?
- Up-titrate current medications?
- Introduce additional therapies?
Ultimate treatment plan

- Try uptitrate Carvedilol to 50 mg bd
- Spironolactone should be added but........
- Upgrade the pacemaker to CRT-D
- If heart rate remains above 70 beats/minute, add Ivabradine
- Manage the discharge, follow up planning
ICD

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary prevention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An ICD is recommended in a patient with a ventricular arrhythmia causing haemodynamic instability, who is expected to survive for >1 year with good functional status, to reduce the risk of sudden death.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Primary prevention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An ICD is recommended in a patient with symptomatic HF (NYHA class II–III) and an EF ≤35% despite ≥3 months of treatment with optimal pharmacological therapy, who is expected to survive for >1 year with good functional status, to reduce the risk of sudden death</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>(i) Ischaemic aetiology and >40 days after acute myocardial infarction</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>(ii) Non-ischaemic aetiology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ivabradine

<table>
<thead>
<tr>
<th>IVABRADINE</th>
<th>SHOULD BE CONSIDERED TO REDUCE THE RISK OF HF HOSPITALIZATION IN PATIENTS IN SINUS RHYTHM WITH AN EF ≤35%, A HEART RATE REMAINING ≥70 b.p.m., AND PERSISTING SYMPTOMS (NYHA CLASS II–IV) DESPITE TREATMENT WITH AN EVIDENCE-BASED DOSE OF BETA-BLOCKER (OR MAXIMUM TOLERATED DOSE BELOW THAT), ACE INHIBITOR (OR ARB), AND AN MRA (OR ARB).</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

May be considered to reduce the risk of HF hospitalization in patients in sinus rhythm with an EF ≤35% and a heart rate ≥70 b.p.m. who are unable to tolerate a beta-blocker. Patients should also receive an ACE inhibitor (or ARB) and an MRA (or ARB).
The patient died in 2010 from intractable heart failure - 12 years after the admission for AHF. She was able to see all 5 grandchildren being born.
HeFSSA Practitioners Program 2014
(Heart Failure Society of South Africa)

08:00 – 08:30 Welcome

08:30 – 09:15 Clinical Case Presentation 1

09:15 – 10:00 Clinical Case Presentation 2

10:00 – 10:30 Tea Break

10:30 – 11:15 Clinical Case Presentation 3

11:15 – 11:45 Clinical Case Presentation 4

11:45 – 12:00 Questionnaire

12:00 – 14:00 Lunch