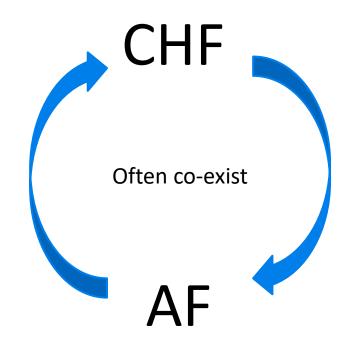
HeFSSA Practitioners Program 2018 "Back to basics on heart failure treatment?"

- Co-morbidity in heart failure
- Arrhythmias in heart failure
- Special investigations in heart failure
- Heart failure with preserved EF, what is new?"



Atrial Fibrillation (AF)

- 2-fold increase in mortality
- 3-fold increase in heart failure
- 5-fold increase in stroke/systemic embolism
- Decrease in quality of life

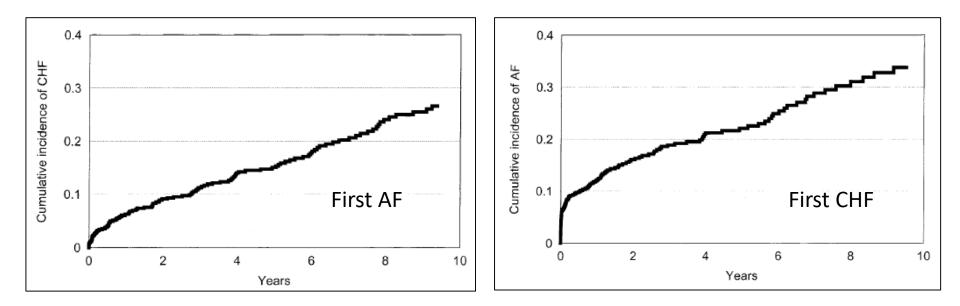


Kannel et al. Am J Cardiol 1998

Atrial Fibrillation and CHF

A vicious circle....

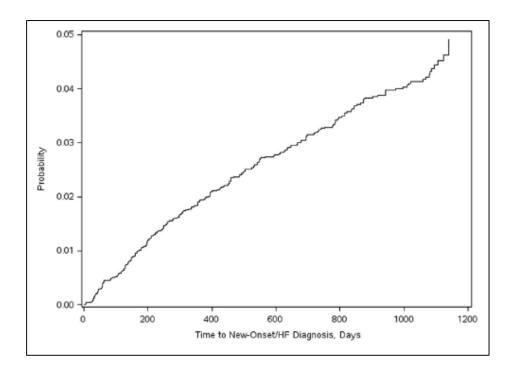

- Rapid and irregular rate
 -> decrease in cardiac
 output
- Loss of atrial kick


- Increases atrial filling pressures -> structural remodelling and electrophysiologic al remodelling
- Functional MR

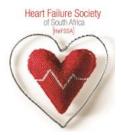
CHF is a clinical syndrome due to <u>heterogenous</u> diseases

AF and CHF: temporal relations

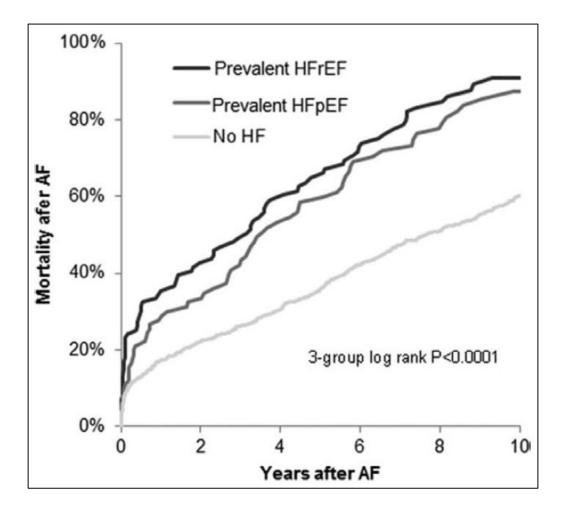
FRAMINGHAM DATA


"AF precedes CHF about as often as CHF precedes AF" Incidence of CHF: 3-4% per year

Wang, Circulation, 2003


AF and CHF: temporal relations

ORBIT-AF DATA

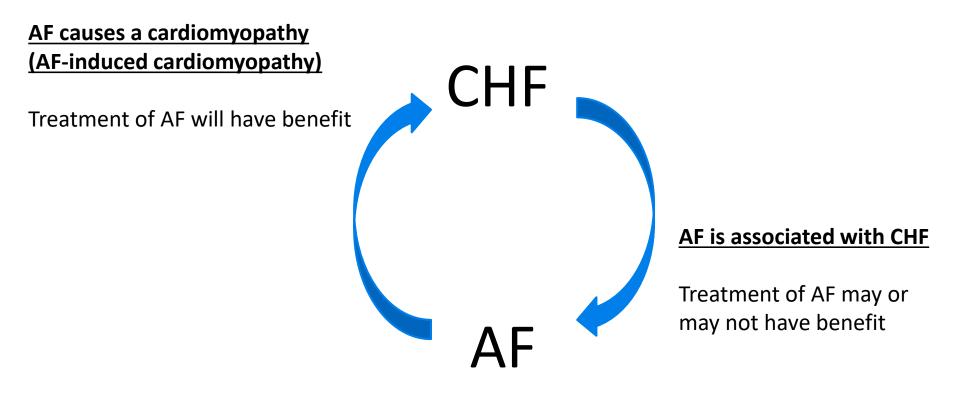

6545 patients with no CHF at baseline Contemporary population Incidence of CHF: 1-2% per year 2/3 developed HFpEF

Pandey, JACC Heart failure, 2017

AF and CHF: prognosis

New onset AF is <u>associated</u> with an increase in all-cause mortality (HFrEF>HFpEF>no HF)

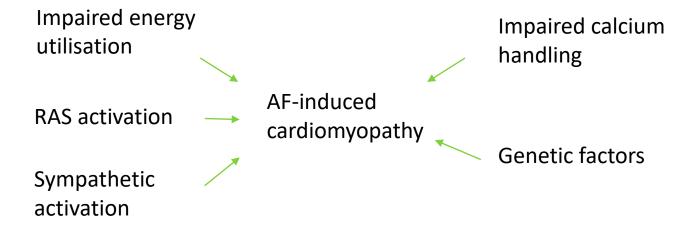
AF: marker or independent risk factor?



SA

Verma et al., Circulation, 2017.

Atrial Fibrillation and CHF

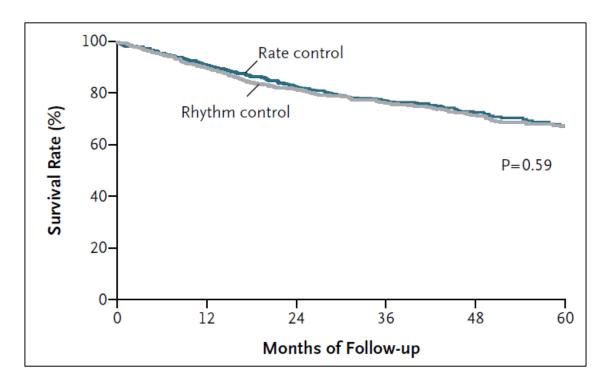

Distinguishing which is the primary disturbance is challenging

AF-induced Cardiomyopathy

Pathogenesis:

Pervalence: (0.5%-29%)

	AF and CHF (n)	AF-induced cardiomyopathy (LV function improved)	Treatment
Redfield et al.	63	16 (25%)	AV node ablation
Ozcan et al.	56	16 (29%)	AV node ablation
Sohinki et al. (Europace 2014)	45	DCMO group (11.2%) ICMO (0.5%)	CRT and AV node ablation


Management of AF and CHF (HFrEF)

- Control risk factors (hypertension, OSA...)
- Anticoagulation usually indicated (CHA₂DS₂-VASc score)
- Standard heart failure therapy
 - ACEi/ARB/MRA
- Rate control
 - Beta-blocker +/- Digoxin
- Rhythm control (Amiodarone and/or catheter ablation)
 - Severe symptoms
 - AF-induced cardiomyopathy suspected

Antiarrhythmic drugs (AF-CHF)

RCT of rate versus rhythm control in patients with AF and CHF

1376 patients with AF and CHF (LVEF <= 35%)

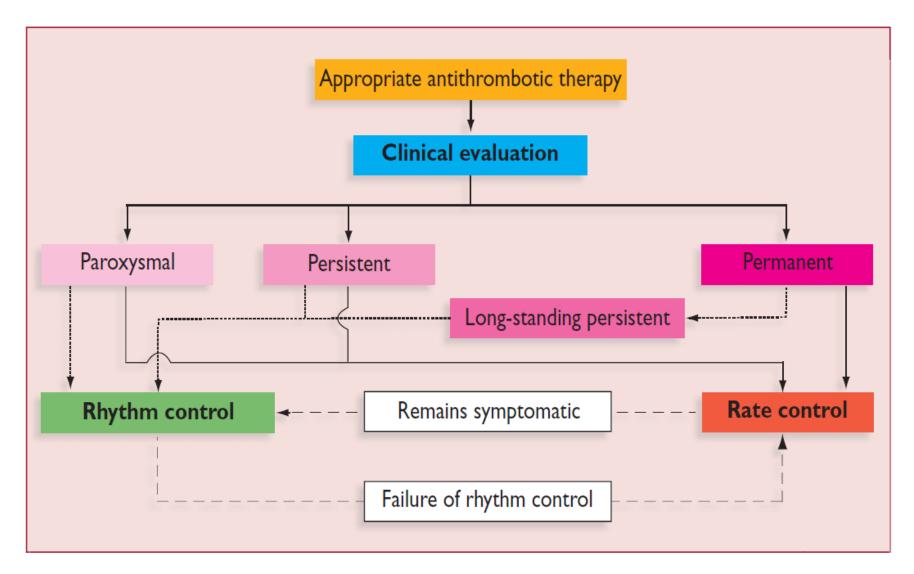
- 33% paroxysmal
- 67% persistent

Rhythm control group:

- 82% Amiodarone
- 2% Sotalol
- <1% Dofetilide

No difference in cardiovascular mortality (HR 1.06; P=0.59)

Potential benefit of sinus rhythm may be neutralized by the toxic effects of AADS


AADs only successful in maintaining SR in 65-70%

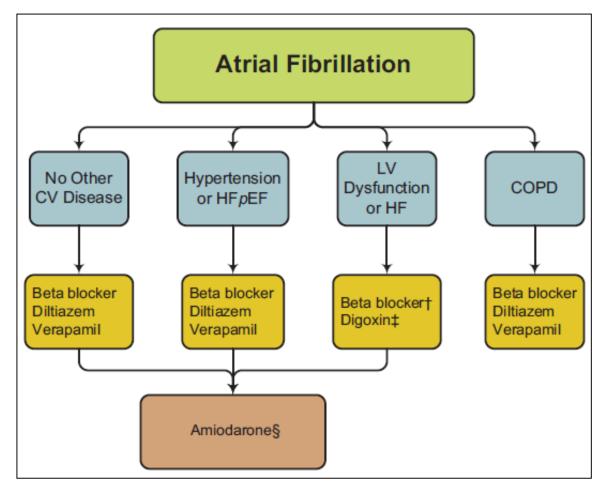
Roy et al., NEJM, 2008

Rate versus Rhythm control?

Camm et al. Europace, 2010

Management of AF and CHF

Rate control


- Should be the default initial strategy
- AV nodal blockers (beta-blockers, digoxin (measure digoxin levels))
- Avoid calcium channel blockers if LVEF<=40% because of negative inotropic effect
- Amiodarone can be used as a second-line agent if beta-blockers, digoxin fail
- AV node ablation and pacing is indicated in patients with permanent AF who have poor rate control despite drugs and who are considered not to be candidates for an AF ablation

2016 ESC AF guideline

Rate control strategy

Targets:

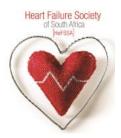
Resting HR<80bpm (IIA, B)

Resting HR<110bpm with no symptoms with normal LV function(IIB, B)

RACE II (Average resting heart rates)

Strict control : 75bpm

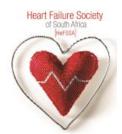
Lenient control group: 85bpm



Management of AF and CHF

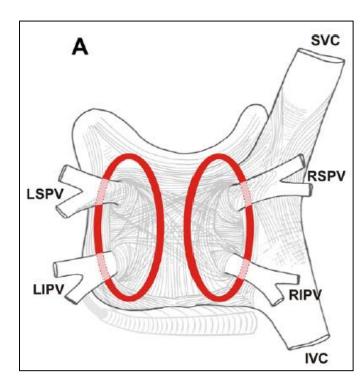
Rhythm control

- Persistent symptoms in AF
- First occurrence
- Failure to achieve adequate rate control
- Younger patients < 65 years
- Patients early in the natural history of AF
- AF-induced cardiomyopathy
- AF with a reversible disorder (e.g. Hyperthyroidism)


2016 ESC AF guideline

Role of catheter ablation in AF and CHF

ESC 2016 guidelines: No clear consensus on who should be offered catheter ablation



Basis for AF ablation

<u> Aim:</u>

- 1. Eliminate PV triggers
- 2. Alter arrhythmogenic substrate

⇒ Pulmonary vein isolation (PVI)

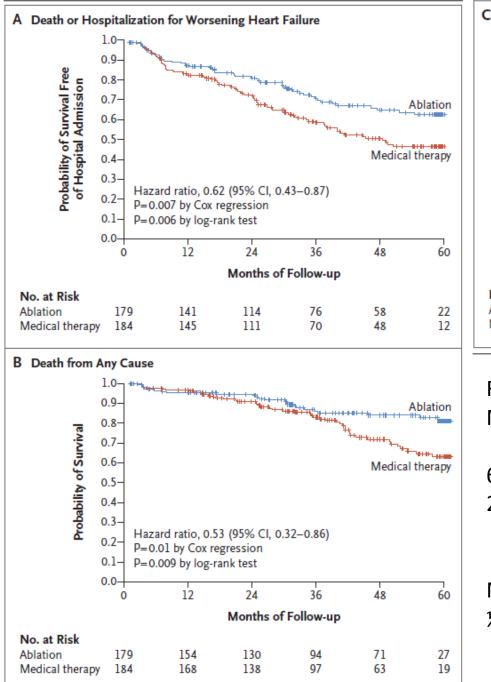
Paroxysmal or Persistent AF with HFrEF Evidence from RCTs

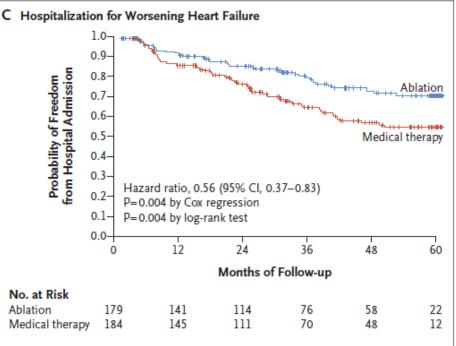
Study	Ablation (n)	Aetiology	Control (n)	Type of AF	Ablation success	Results	Complications
PABACHF	41	73% ICMO	CRT and AVNA	49% PAF	88%	Improved LVEF (6 months)	12%
MacDonald	22	50% ICMO	Rate control	100% Persistent	50%	No difference (12 months)	20%
ARC-HF	26	33% ICMO	Rate control	100% Persistent	88%	Improved exercise tolerance (12 months)	15%
CAMTAF	67	26% ICMO	Rate control	100% Persistent	73%	Improved LVEF, better exercise tolerance (12 months)	7.7%
AATAC	102	62% ICMO	Amiodaron e (beta- blockers 78%)	100% Persistent	70%	Lower mortality and unplanned hospitalisations	2.9%
CAMERA- MRI	33	100% DCMO	Rate control	28% Persistent	75%	Improved LVEF	6.1%

Proof of concept trials

Small numbers of patients (n=291) Heterogenenous populations Soft endpoints with 1 trial showing no benefit Short follow-up with high ablation success rates High complications rates in expert centres Liang et al., Cardiac Failure Review, 2018

Catheter Ablation for Atrial Fibrillation with Heart Failure


Nassir F. Marrouche, M.D., Johannes Brachmann, M.D., Dietrich Andresen, M.D., Jürgen Siebels, M.D., Lucas Boersma, M.D., Luc Jordaens, M.D., Béla Merkely, M.D., Evgeny Pokushalov, M.D., Prashanthan Sanders, M.D., Jochen Proff, B.S., Heribert Schunkert, M.D., Hildegard Christ, M.D., Jürgen Vogt, M.D., and Dietmar Bänsch, M.D., for the CASTLE-AF Investigators*


CONCLUSIONS

Catheter ablation for atrial fibrillation in patients with heart failure was associated with a significantly lower rate of a composite end point of death from any cause or hospitalization for worsening heart failure than was medical therapy.

Repeat ablations in 25% Major complication rate 9%

63% were in SR in ablation group at follow-up 22% were in SR in the medical group

Mortality difference occurred at 3 years when ½ of patients had exited the trial

Table 2. Primary and Secondary Clinical End Points.*						
End Point	Ablation (N = 179)	Medical Therapy (N=184)	Hazard Ratio (95% CI)	P Val	ue	
				Cox Regression	Log-Rank Test	
	numł	ber (percent)				
Primary†	51 (28.5)	82 (44.6)	0.62 (0.43-0.87)	0.007	0.006	
Secondary						
Death from any cause	24 (13.4)	46 (25.0)	0.53 (0.32–0.86)	0.01	0.009	
Heart-failure hospitalization	37 (20.7)	66 (35.9)	0.56 (0.37–0.83)	0.004	0.004	
Cardiovascular death	20 (11.2)	41 (22.3)	0.49 (0.29-0.84)	0.009	0.008	
Cardiovascular hospitalization	64 (35.8)	89 (48.4)	0.72 (0.52–0.99)	0.04	0.04	
Hospitalization for any cause	114 (63.7)	122 (66.3)	0.99 (0.77–1.28)	0.96	0.96	
Cerebrovascular accident	5 (2.8)	11 (6.0)	0.46 (0.16–1.33)	0.15	0.14	

Small number of expected endpoints (32% less than originally powered)

HR 0.62 for the primary endpoint and HR 0.53 for all-cause mortality is <u>lower</u> than any HF intervention to date

Large differences in effect with small number of events e.g. CASTLE AF had only 11% of cardiovascular deaths compared to AF-CHF

Paroxysmal or Persistent AF <u>with</u> CHF Evidence from RCTs - conclusions

Evolving evidence suggests an increasing role of catheter ablation in HFrEF

Small RCTs are "hypothesis generating"

CASTLE-AF has numerous limitations +++

Further trials needed

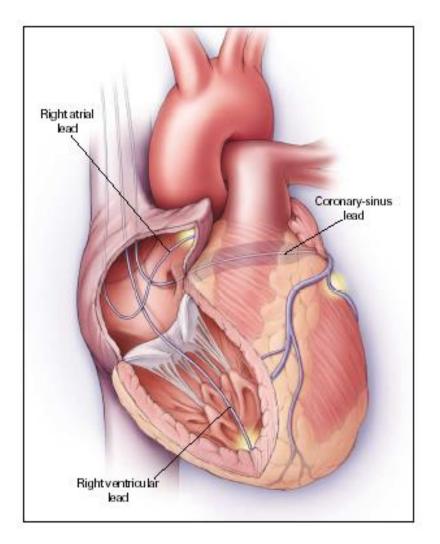
Paroxysmal or Persistent AF with HFpEF Evidence from RCTs

Study	Alation (n)	Aetiology	Control (n)	Type of AF	Ablation success	Results	Complications
RAFT-AF (trial underway)	300		300				

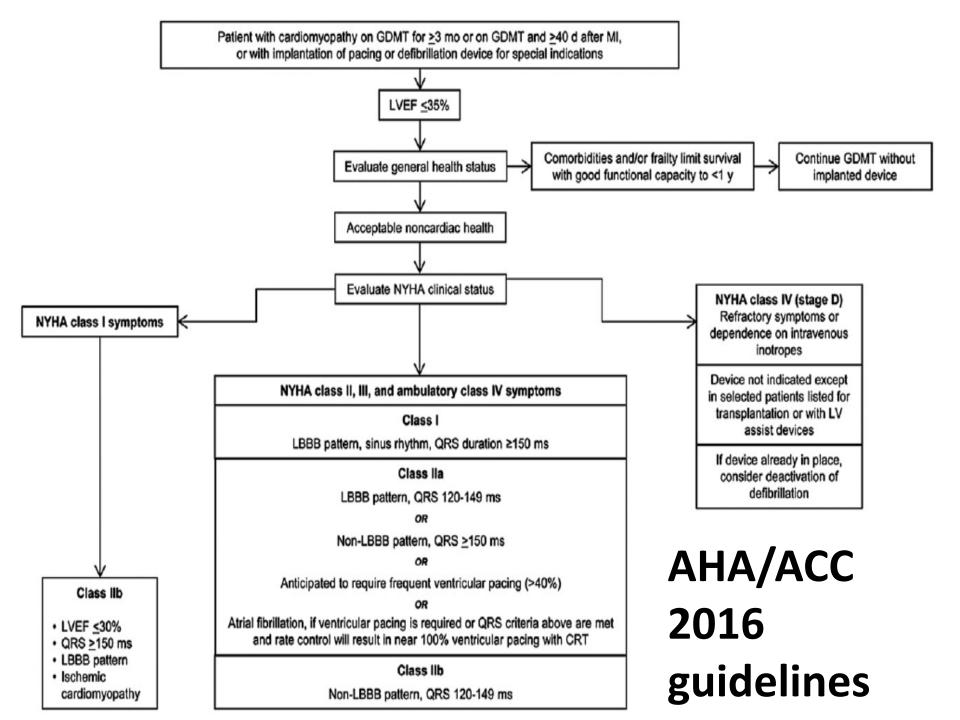
Summary of catheter ablation of AF and CHF

There is a cohort of HFrEF patients who likely will benefit from AF ablation

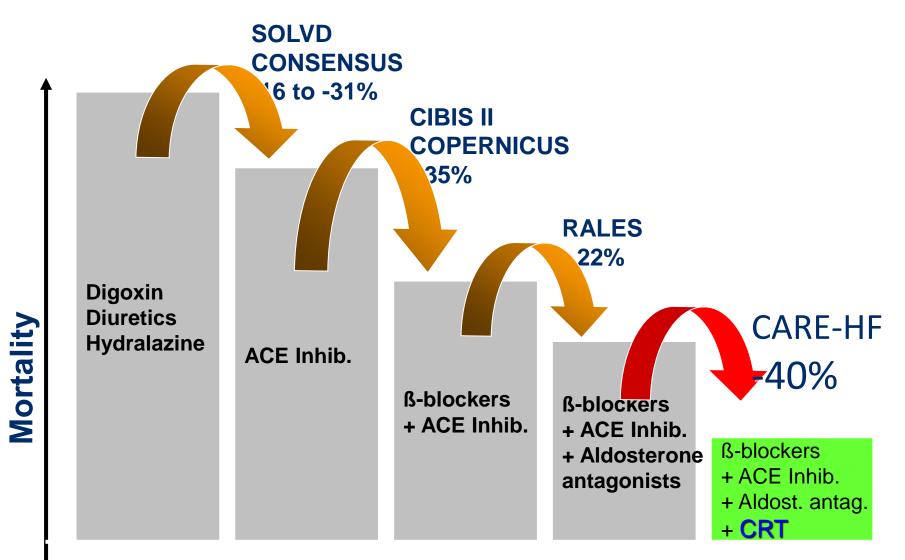
AF-induced cardiomyopathy Dilated cardiomyopathy Ischaemic cardiomyopathy


For symptom relief, "hard" endpoints unclear

Individualised approach



Devices for CHF – Cardiac resynchronization therapy



CRT: Weight of Evidence

- More than 4000 patients enrolled in randomized controlled trials
- Consistent improvement in quality of life, functional status, and exercise capacity
- Strong evidence for reverse remodeling
 - LV volumes and dimensions
 - 1 LV ejection fraction
 - Mitral regurgitation
- Reduction in morbidity
- Reduction in mortality

SA Heart

Adapted from Ellenbogen KA et al.; J Am Coll Cardiol 2005;46:2199 –203

Devices for CHF – Implantable cardioverter defibrillator (ICD)

ICD for the secondary prevention of sudden cardiac death and ventricular tachycardia

Recommendations	C lass ^a	Level ^b	Ref. ^c
ICD implantation is recommended in patients with documented VF or haemodynamically not tolerated VT in the absence of reversible causes or within 48 h after myocardial infarction who are receiving chronic optimal medical therapy and have a reasonable expectation of survival with a good functional status >1 year.	I	A	151– 154
ICD implantation should be considered in patients with recurrent sustained VT (not within 48 h after myocardial infarction) who are receiving chronic optimal medical therapy, have a normal LVEF and have a reasonable expectation of survival with good functional status for >1 year.	lla	С	This panel of experts
In patients with VF/VT and an indication for ICD, amiodarone may be considered when an ICD is not available, contraindicated for concurrent medical reasons or refused by the patient.	ШЬ	С	155, 156

Implantable cardioverter defibrillator in patients with left ventricular dysfunction

Recommendations	C lass ^a	Level ^b	Ref. ^c
ICD therapy is recommended to reduce SCD in patients with symptomatic HF (NYHA class II–III) and LVEF \leq 35% after \geq 3 months of optimal medical therapy who are expected to survive for at least 1 year with good functional status:			
 Ischaemic aetiology (at least 6 weeks after myocardial infarction). 	I.	A	63,64
 Non-ischaemic aetiology. 	I	в	64,316, 317

2015 ESC guidelines