Program:

Module 1:

- Definition and Classification
- Epidemiology of Heart Failure
- Pathophysiology of Heart Failure
- Specific Diseases causing Heart Failure and practical case studies

Module 2:

- Diagnosis and Investigation of HF and Practical Case
 Studies
- •Treatment of Heart Failure and Practical Case Studies

Treatment Approach for the Patient with Heart Failure

Stage A

At high risk, no structural disease

Therapy

- Treat Hypertension
- Treat lipid disorders
- Encourage regular exercise
- Discourage alcohol intake
- ACE inhibition

Stage B

Structural heart disease, asymptomatic

Therapy

- All measures under stage A
- ACE inhibitors in appropriate patients
- Beta-blockers in appropriate patients

Stage C

Structural heart disease with prior/current symptoms of HF

Therapy

 All measures under stage A

Drugs:

- Diuretics
- ACE inhibitors
- Beta-blockers
- Digitalis
- Dietary salt restriction

Stage D

Refractory HF requiring specialized interventions

Therapy

- All measures under stages A,B, and C
- Mechanical assist devices
- Heart transplantation
- Continuous (not intermittent) IV inotropic infusions for palliation
- Hospice care

Treatment of Heart Failure

Two distinct settings:

Treatment of Acute Decompensated Heart Failure

Goal:

Stabilise the patient, return the filling pressures to as close as possible to normal and restore organ perfusion.

Chronic Stable Heart Failure Goal:

Enhance survival and minimise symptoms.

At All Times Treat Important

Precipitating Factors

Change a compensated condition to frank heart failure. (Can occur in up to 93% of patients)

Ghali et al. Arch Int Med 1986

- Inappropriate reduction in therapy
- Arrhythmias (including abnormal intra-ventricular conduction)
- Myocardial infarction/ischaemia
- Systemic infection
- Pulmonary embolism
- Drugs causing myocardial depression
- -Oestrogens, corticosteroids, NSAIDS.
- Development of another form of heart disease

Pharmacologic Management ACE Inhibitors

- Blocks the conversion of angiotensin I to angiotensin
 II; prevents functional deterioration.
- Recommended for all heart failure patients.
- Relieves symptoms and improves exercise tolerance.
- Reduces risk of death and decreases disease progression.
- Benefits may not be apparent for 1-2 months after initiation.

Pharmacologic Management

Angiotensin Receptor Blockers (ARBs)

- Block AT₁ receptors, which bind circulating angiotensin II.
- Examples: valsartan, candesartan, losartan.
- Should not be considered equivalent or superior to ACE inhibitors.
- In clinical practice, ARBs should be used to treat patients who are ACE intolerant due to intractable cough or who develop angioedema.

Pharmacologic Management

Beta-Blockers

- Cardioprotective effects due to blockade of excessive SNS stimulation.
- In the short-term, beta blocker decreases myocardial contractility; increase in EF after 1-3 months of use.
- Long-term, placebo-controlled trials have shown symptomatic improvement in patients treated with certain beta-blockers.¹
- When combined with conventional HF therapy, betablockers reduce the combined risk of morbidity and mortality, or disease progression.¹

MOCHA: β blocker therapy reverses remodelling over 6 months

CARMEN: β blocker + ACE inhibitor therapy reverses remodelling over 18 months

LVESVi Improvement

Pharmacologic Management

Aldosterone Antagonists

- Generally well-tolerated.
- Shown to reduce heart failure-related morbidity and mortality.
- Generally reserved for patients with NYHA Class III-IV HF.
- Side effects include hyperkalemia and gynecomastia. Potassium and creatinine levels should be closely monitored.

Diuretics

Fluid retention may increase cardiac output by a Frank-Starling mechanism.

Other consequences of fluid retention include:

Increase diastolic pressure thus

Increase in wall stress thus

Hypertrophy and remodelling

There may be oedema, dyspnoea and pulmonary oedema.

Hence the use of diuretics

Classes of Diuretics

Loop Diuretics

Furosemide, turasemide, bumetamide

Thiazide and Thiazide-like

Potassium Sparing Diuretics

Amiloride, triamterine

Mineralo Corticoid Inhibitory

Spironolactone

Carbonic Anhydrase Inhibitors

Acetezolamide (diamox)

Diuretics

With the exception of spironolactone (an aldosterone antagonist) diuretics do not influence the natural history of chronic heart failure.

Bristow MR et

al. Heart Disease. P562. Ed Braunwald, Zipes, Lippy, WB Saunders 2001

However....

Diuretics potentially improve congestive symptoms and may slow down ventricular remodelling.

Problems Encountered With Diuretics

- Metabolic Side Effects
 Hyperglycaemia, hyperuricaemia
- 2. Electrolyte Imbalance
- 3. <u>Volume Depletion</u>
 Hypertension, interference with other medications (Ace I, ARB, beta blockade)
- 4. <u>Diuretic Resistance (Na=sodium)</u>
 - Net gain of Na with a high Na diet
 - Compensatory hypertrophy of tubular
 epithelial cells distal to their site of
 action Other drugs NSAIDS
 - ↓ Renal perfusion

Cardiac Glycosides

- Have a definite inotropic effect (more Starling curve -calcium mediated).
- Does not decrease mortality.
- Beneficial effects in mild to moderate failure in sinus rhythm.
- Requires vigilance regarding toxic accumulation (NB: GFR, body mass).
- Measurement of serum levels advisable.
- Contra-indicated in predominantly diastolic dysfunction.

Medications Which Increase Serum Digoxin Levels Mainly By Renal Clearance

Amiodarone

Verapamil

Nifedipine

Diltiazem

Quinidine

Propafenone

Captopril

Carvedilol

Saint John's wort

Amiloride

Triamterene

Macrolide Antibiotics

Tetracycline

Indomethacin

Alprazolam

Itraconazole

Cyclosporine Spironolactone

Vasodilators

Decrease arteriolar tone ↑ CO

Decrease venous preload ↓ congestion

Acute Phase

Heart Failure Socie

Sodium nitroprusside

Nitrates initially may also have a beneficial primary coronary effect, secondary ↑CO.

Chronic Stable Phase

Oral Nitrates – Note: Avoid nitrate resistance by having a drug free time.

<u>Hydrallazine</u> – Need for 3-4 times daily dose. (major increase in systemic and pulmonary afterload).

Anticoagulants

The presence of heart failure markedly lowers the threshold for instituting anticoagulant therapy e.g. atrial fibrillation, bed rest.

Timing is Everything

"Either my watch has stopped or this guy is dead."

Groucho Marx: A day at the races.

Prevalence of Inter- or Intraventricular Conduction Delay

General HF Population^{1,2}

Moderate to Severe HF Population^{3,4,5}

¹ Havranek E, Masoudi F, Westfall K, et al. Am Heart J 2002;143:412-417

² Shenkman H, McKinnon J, Khandelwal A, et al. Circulation 2000;102(18 Suppl II): abstract 2293

³ Schoeller R, Andersen D, Buttner P, et al. Am J Cardiol. 1993;71:720-726

Aaronson K, Schwartz J, Chen T, et al. Circulation 1997;95:2660-2667

⁵ Farwell D, Patel N, Hall A, et al. Eur Heart J 2000;21:1246-1250

<u>Determinants of Cardiac Synchrony</u> <u>Interventricular Synchrony</u>

Determinants: Bundle branches

<u>Determinants of Cardiac Synchrony</u> <u>Intraventricular Synchrony</u>

Mainly affects LV (scar etc)

Bundle Branch Patterns of Activation

Achieving Cardiac Resynchronization

Goal: Atrial synchronous biventricular pacing

Transvenous approach for left ventricular lead via coronary sinus

Back-up epicardial approach

Summary of Proposed Mechanisms Therapy

Ventricular Dysynchrony and Cardiac Resynchronization

Ventricular Dysynchrony¹

Electrical: Inter- or

Intraventricular conduction delays typically manifested as left bundle branch block

Structural: disruption of myocardial collagen matrix impairing electrical conduction and

mechanical efficiency

Mechanical: Regional wall motion abnormalities with increased workload and stress—compromising ventricular mechanics

Cardiac Resynchronization

Therapeutic intent of atrial synchronized biventricular pacing

Modification of interventricular, intraventricular, and atrial-ventricular activation sequences in patients with ventricular dysynchrony Complement to optimal medical therapy

¹ Tavazzi L. Eur Heart J 2000;21:1211-1214

Benefits Sustained Through 2 Years

MIRACLE Study Program

Paired Data Displayed

■ Baseline

Follow-up

CRT Effect on LV Structure at 6 Months in Moderate to Severe Heart Failure

Data sources: MIRACLE: Circulation 2003;107:1985-1990

MIRACLE ICD: JAMA 2003;289:2685-2694

Contak CD: JAm Coll Cardiol 2003;2003;42:1454-1459

CARE-HF: CRT reduces death or unplanned hospitalisation for CV events in NYHA III/IV

MICD II: CRT therapy may reverse remodelling over 6 months in mild HF

<u>Grade II NYHA</u>

Grade II NYHA

Madit CRT

Severity of Heart Failure

Modes of Death

Prediction of Sudden Death from History – Paris Study

Factors associated with sudden death during follow up (23 years):

- Resting heart rate.
- Systolic and diastolic blood pressure.
- Tobacco consumption.
- Body mass index.
- Diabetes.

of South Africa

- Serum cholesterol.
- Parental history of sudden death.

Most Cardiac Arrests (70%-80%) Occur At Home

Cummins RO et al. *Circulation*, 1991: 83:832-847

Litwin PE et al. *Emerg Med,* 1987: 16:787-791

Summary: Treatment

1. Acute Phase

fluid overload (oedema, pulmonary oedema). Remove/treat precipitating cause (ischaemia, infection, arrhythmia, thyrotoxicosis)

2. Chronic Phase

Stop the vicious cycle

- a. ACE inhibitors, ARB
- b. Beta blockers
- c. Spironolactone
- d. Digoxin (?)
- e. Arrhythmias
- f. Incoordinate contractions

REST REVERSE REPAIR Heart Failure Society